Publications by authors named "R Brisk"

Introduction: Representation learning allows artificial intelligence (AI) models to learn useful features from large, unlabelled datasets. This can reduce the need for labelled data across a range of downstream tasks. It was hypothesised that wave segmentation would be a useful form of electrocardiogram (ECG) representation learning.

View Article and Find Full Text PDF

Automated interpretation of the 12-lead ECG has remained an underpinning interest in decades of research that has seen a diversity of computing applications in cardiology. The application of computers in cardiology began in the 1960s with early research focusing on the conversion of analogue ECG signals (voltages) to digital samples. Alongside this, software techniques that automated the extraction of wave measurements and provided basic diagnostic statements, began to emerge.

View Article and Find Full Text PDF

Compartment-based infectious disease models that consider the transmission rate (or contact rate) as a constant during the course of an epidemic can be limiting regarding effective capture of the dynamics of infectious disease. This study proposed a novel approach based on a dynamic time-varying transmission rate with a control rate governing the speed of disease spread, which may be associated with the information related to infectious disease intervention. Integration of multiple sources of data with disease modelling has the potential to improve modelling performance.

View Article and Find Full Text PDF

Aims: Deep learning (DL) has emerged in recent years as an effective technique in automated ECG analysis.

Methods And Results: A retrospective, observational study was designed to assess the feasibility of detecting induced coronary artery occlusion in human subjects earlier than experienced cardiologists using a DL algorithm. A deep convolutional neural network was trained using data from the STAFF III database.

View Article and Find Full Text PDF

Objective: The Internet of Things provide solutions for many societal challenges including the use of unmanned aerial vehicles to assist in emergency situations that are out of immediate reach for traditional emergency services. Out of hospital cardiac arrest (OHCA) can result in death with less than 50% of victims receiving the necessary emergency care on time. The aim of this study is to link real world heterogenous datasets to build a system to determine the difference in emergency response times when having aerial ambulance drones available compared to response times when depending solely on traditional ambulance services and lay rescuers who would use nearby publicly accessible defibrillators to treat OHCA victims.

View Article and Find Full Text PDF