A series of dihydropyridinone (DHP) compounds was prepared and evaluated for MGAT2 activity. The efforts led to the identification of novel tetrazolones with potent MGAT2 inhibitory activity and favorable profiles. Further tests of select analogues in mouse models revealed significant reduction in food intake and body weight.
View Article and Find Full Text PDFGlucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators.
View Article and Find Full Text PDFThis paper describes our continued efforts in the area of small-molecule apelin receptor agonists. Recently disclosed compound showed an acceptable metabolic stability but demonstrated monodemethylation of the dimethoxyphenyl group to generate atropisomer metabolites . In this article, we extended the structure-activity relationship at the C2 position that led to the identification of potent pyrazole analogues with excellent metabolic stability.
View Article and Find Full Text PDFMGAT2 inhibition is a potential therapeutic approach for the treatment of metabolic disorders. High-throughput screening of the BMS internal compound collection identified the aryl dihydropyridinone compound (hMGAT2 IC = 175 nM) as a hit. Compound had moderate potency against human MGAT2, was inactive vs mouse MGAT2 and had poor microsomal metabolic stability.
View Article and Find Full Text PDFThe development of compounds with the potential for genotoxicity poses significant safety risks as well as risks of attrition. Although genotoxicity evaluation of the parent molecule is routine and reasonably predictive, assessing the risk of commercialization when release of a genotoxic degradant and/or metabolite from a nongenotoxic parent molecule is suspected is much more challenging and resource intensive. Much of the risk of the formation of a genotoxic degradant/metabolite can be discharged with the conduct of carcinogenicity studies in models where the compound is formed, but this approach requires a great deal of time and resources.
View Article and Find Full Text PDF