Publications by authors named "R Bourgain"

We show that the resonance shifts in the fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.

View Article and Find Full Text PDF

We study the emergence of collective scattering in the presence of dipole-dipole interactions when we illuminate a cold cloud of rubidium atoms with a near-resonant and weak intensity laser. The size of the atomic sample is comparable to the wavelength of light. When we gradually increase the number of atoms from 1 to ~450, we observe a broadening of the line, a small redshift and, consistently with these, a strong suppression of the scattered light with respect to the noninteracting atom case.

View Article and Find Full Text PDF

We have implemented the Gedanken experiment of an individual atom scattering a wave packet of near-resonant light, and measured the associated Wigner time delay as a function of the frequency of the light. In our apparatus, the atom behaves as a two-level system and we have found delays as large as 42 ns at resonance, limited by the lifetime of the excited state. This delay is an important parameter in the problem of collective near-resonant scattering by an ensemble of interacting particles, which is encountered in many areas of physics.

View Article and Find Full Text PDF

We demonstrate the lossless state-selective detection of a single rubidium 87 atom trapped in an optical tweezer. This detection is analogous to the one used on trapped ions. After preparation in either a dark or a bright state, we probe the atom internal state by sending laser light that couples an excited state to the bright state only.

View Article and Find Full Text PDF

Diffusive flux of oxygen through tissues which are essentially connective and have few cells, display reduced diffusion coefficients when compared to that through an equivalent lamina of water. In general even significant reductions can be explained in terms of the exclusions imposed on small molecular weight diffusates by the large hydrodynamic domains of the connective tissue components. An alternative way of explaining this large exclusion is to point to the very large microscopic viscosities which large interacting polymers impose upon the solvent (water).

View Article and Find Full Text PDF