Publications by authors named "R Botting"

Cutaneous T cell lymphoma (CTCL) is a potentially fatal clonal malignancy of T cells primarily affecting the skin. The most common form of CTCL, mycosis fungoides, can be difficult to diagnose, resulting in treatment delay. We performed single-cell and spatial transcriptomics analysis of skin from patients with mycosis fungoides-type CTCL and an integrated comparative analysis with human skin cell atlas datasets from healthy and inflamed skin.

View Article and Find Full Text PDF
Article Synopsis
  • The study created a comprehensive reference atlas of human prenatal skin (7-17 weeks post-conception) using advanced techniques like single-cell and spatial transcriptomics to explore the roles of immune cells, specifically macrophages, in skin development.
  • It was found that interactions between immune and non-immune cells are essential for key processes in skin development, such as hair follicle formation, scarless wound healing, and blood vessel growth.
  • Additionally, while a skin organoid model mimicked certain features of prenatal skin, it lacked immune cells and showed limited blood vessel diversity, highlighting the important roles of macrophages and their derived factors in skin morphology and development.
View Article and Find Full Text PDF

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation.

View Article and Find Full Text PDF

The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution.

View Article and Find Full Text PDF