We examined the impact of an APOE ε4 genotype on Alzheimer's disease (AD) subject platelet and lymphocyte metabolism. Mean platelet mitochondrial cytochrome oxidase Vmax activity was lower in APOE ε4 carriers and lymphocyte Annexin V, a marker of apoptosis, was significantly higher. Proteins that mediate mitophagy and energy sensing were higher in APOE ε4 lymphocytes which could represent compensatory changes and recapitulate phenomena observed in post-mortem AD brains.
View Article and Find Full Text PDFIntroduction: Brain bioenergetics are defective in Alzheimer's disease (AD). Preclinical studies find oxaloacetate (OAA) enhances bioenergetics, but human safety and target engagement data are lacking.
Methods: We orally administered 500 or 1000 mg OAA, twice daily for 1 month, to AD participants (n = 15 each group) and monitored safety and tolerability.
Reductions in bioenergetic fluxes, mitochondrial enzyme activities, and mitochondrial number are observed in Alzheimer's disease (AD). Preclinical work indicates estrogen pathway signaling by either estrogen or selective β estrogen receptor (ERβ) agonists benefits these parameters. To assess whether an ERβ agonist could improve mitochondrial function in actual AD subjects, we administered S-equol (10 mg twice daily) to 15 women with AD and determined the platelet mitochondria cytochrome oxidase (COX) activity before initiating S-equol (lead-in), after two weeks of S-equol (active treatment), and two weeks after stopping S-equol (wash-out).
View Article and Find Full Text PDF