Publications by authors named "R Bodmeier"

The removal of organic solvents during the preparation of biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microparticles by an O/W- solvent extraction/evaporation process was investigated and controlled by diafiltration. Emulsification and steady replacement of the aqueous phase were performed in parallel in a single-vessel setup. During the process, the solidification of the dispersed phase (drug:PLGA:solvent droplets) into microparticles was monitored with video-microscopy and focused beam reflectance measurement (FBRM) and the residual solvent content was analyzed with headspace gas chromatography (organic solvent) and coulometric Karl-Fischer titration (water).

View Article and Find Full Text PDF

The removal of residual solvents from biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microparticles by fluidized bed drying was investigated. Microparticles were prepared by the O/W solvent extraction/evaporation method and the influence of various process and formulation parameters on the secondary drying was studied. PLGA microparticles and films were characterized for residual organic solvent and water content, recrystallisation, surface morphology, drug loading and in-vitro release of the drugs dexamethasone and risperidone.

View Article and Find Full Text PDF

Purpose: The removal of the residual solvent dichloromethane from biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles was investigated by aqueous or alcoholic wet extraction or vacuum-drying.

Methods: Microparticles were prepared by the O/W solvent extraction/evaporation method. The solidified microparticles were separated by filtration and the effect of subsequent drying and wet extraction methods were investigated.

View Article and Find Full Text PDF

The objective of this study was to explore the use of nanosized/micronized sugar particles as porogens for preparing porous poly(lactide-co-glycolide) (PLGA) microparticles by a solid-in-oil-in-water (S/O/W) solvent evaporation method. Porous PLGA microparticles containing dexamethasone were prepared with different nanosized/micronized sugars (sucrose, trehalose and lactose), types of PLGA, and osmogens (NaCl or sucrose) in the external water phase. The microparticles were characterized for morphology, thermal properties, particle size, surface area, encapsulation efficiency and drug release/swelling during release.

View Article and Find Full Text PDF

The objective of this study was to prepare poly(lactide-co-glycolide) (PLGA) microparticles loaded with nanosized drug by combining non-aqueous wet bead milling and microencapsulation. 200-300 nm dexamethasone, hydrocortisone and dexamethasone sodium phosphate nanosuspensions were successfully prepared by wet bead milling the drug in dichloromethane using PLGA as a stabilizer. PLGA microparticles loaded with nanosized drugs were then prepared by a solid-in-oil-in-water (S/O/W) solvent evaporation method or solid-in-oil-in-oil (S/O/O) organic phase separation method.

View Article and Find Full Text PDF