Publications by authors named "R Blazej"

Diagnostics of conveyor belts used in horizontal transport without the need to take the belt off the conveyor and test it in laboratory conditions is an important aspect in mining plants (Jurdziak et al., Adv Intell Syst Comput, 835:645-654, 2019). Current testing, and thus obtaining knowledge about the current thickness of the conveyor belt covers, allows for control accelerated changes.

View Article and Find Full Text PDF

Belt conveyors are used for transporting bulk materials over distances. The core of the belt, by transferring the longitudinal stresses and ensuring proper frictional coupling of the belt, enables belt movement and transportation of materials on its surface. As the belt cover and edges are used, the belt becomes abraded, and the core is subject to fatigue.

View Article and Find Full Text PDF

A high-throughput single copy genetic amplification (SCGA) process is developed that utilizes a microfabricated droplet generator (microDG) to rapidly encapsulate individual DNA molecules or cells together with primer functionalized microbeads in uniform PCR mix droplets. The nanoliter volume droplets uniquely enable quantitative high-yield amplification of DNA targets suitable for long-range sequencing and genetic analysis. A hybrid glass-polydimethylsiloxane (PDMS) microdevice assembly is used to integrate a micropump into the microDG that provides uniform droplet size, controlled generation frequency, and effective bead incorporation.

View Article and Find Full Text PDF

A novel injection method is developed that utilizes a thermally switchable oligonucleotide affinity capture gel to mediate the concentration, purification, and injection of dsDNA for quantitative microchip capillary electrophoresis analysis. The affinity capture matrix consists of a 20 base acrydite modified oligonucleotide copolymerized into a 6% linear polyacrylamide gel that captures ssDNA or dsDNA analyte including PCR amplicons and synthetic oligonucleotides. Double stranded PCR amplicons with complementarity to the capture probe up to 81 bases from their 5' terminus are reproducibly captured via helix invasion.

View Article and Find Full Text PDF

A new affinity-capture-based inline purification, concentration, and injection method is developed for microchip capillary electrophoresis (CE) and used to perform efficient attomole-scale Sanger DNA sequencing separations. The microdevice comprises three axial domains for nanoliter-scale sequencing sample containment, sample plug formation, and high-resolution capillary gel electrophoresis. Purified and concentrated inline sample plugs are formed by electrophoretically driving Sanger sequencing extension fragments into an affinity-capture polymer network positioned within a CE separation channel.

View Article and Find Full Text PDF