Publications by authors named "R Blackmon"

Significance: Assessing the nanostructure of polymer solutions and biofluids is broadly useful for understanding drug delivery and disease progression and for monitoring therapy.

Aim: Our objective is to quantify bronchial mucus solids concentration (wt. %) during hypertonic saline (HTS) treatment via nanostructurally constrained diffusion of gold nanorods (GNRs) monitored by polarization-sensitive optical coherence tomography (PS-OCT).

View Article and Find Full Text PDF

Objective: Accurate vital statistics data are critical for monitoring population health and strategizing public health interventions. Previous analyses of statewide birth data have identified several factors that may reduce birth certificate accuracy including systematic errors and limited data review by clinicians. The aim of this initiative was to increase the proportion of hospitals in Alabama reporting accurate birth certificate data from 67% to 87% within 1 year.

View Article and Find Full Text PDF

Purpose: To evaluate the presence and length of microcracks in resin-based materials finished with different techniques, using optical coherence tomography (OCT).

Methods: Standardized Class V preparations (3x2x2mm) were made in the facial and lingual surfaces of 20 recently-extracted human third molars. 20 preparations were restored with a resin-based composite material (RBC; Filtek Supreme Ultra) and the other 20 with a resin-modified glass-ionomer material (RMGI; Ketac Nano).

View Article and Find Full Text PDF

In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries.

View Article and Find Full Text PDF

The ability to assess toxicant exposures of 3D in vitro mammary models that recapitulate the tissue microenvironment can aid in our understanding of environmental exposure risk over time. Longitudinal studies of 3D model systems, however, are cumbersome and suffer from a lack of high-throughput toxicological assays. In this study, we establish a noninvasive and label-free optical coherence tomography (OCT)-based imaging platform for tracking exposure-response relationships in 3D human mammary epithelial organoid models.

View Article and Find Full Text PDF