Many organisms, including cosmopolitan drosophilids, show circadian plasticity, varying their activity with changing dawn-dusk intervals. How this behaviour evolves is unclear. Here we compare Drosophila melanogaster with Drosophila sechellia, an equatorial, ecological specialist that experiences minimal photoperiod variation, to investigate the mechanistic basis of circadian plasticity evolution.
View Article and Find Full Text PDFEnviron Mol Mutagen
October 2024
The human NEIL1 DNA glycosylase is one of 11 mammalian glycosylases that initiate base excision repair. While substrate preference, catalytic mechanism, and structural information of NEIL1's ordered residues are available, limited information on its subcellular localization, compounded by relatively low endogenous expression levels, have impeded our understanding of NEIL1. Here, we employed a previously developed computational framework to optimize the mitochondrial localization signal of NEIL1, enabling the visualization of its specific targeting to the mitochondrion via confocal microscopy.
View Article and Find Full Text PDFBrain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit.
View Article and Find Full Text PDF