Fingertip friction is a key component of tactile perception. In active tactile exploration, friction forces depend on the applied normal force and on the sliding speed chosen. We have investigated whether humans perceive the speed dependence of friction for textured surfaces of materials, which show either increase or decrease of the friction coefficient with speed.
View Article and Find Full Text PDFSurface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene--poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment.
View Article and Find Full Text PDFThe presence of mechanoreceptors in glabrous skin allows humans to discriminate textures by touch. The amount and distribution of these receptors defines our tactile sensitivity and can be affected by diseases such as diabetes, HIV-related pathologies, and hereditary neuropathies. The quantification of mechanoreceptors as clinical markers by biopsy is an invasive method of diagnosis.
View Article and Find Full Text PDFGlabrous skin is hair-free skin with a high density of sweat glands, which is found on the palms, and soles of mammalians, covered with a thick stratum corneum. Dry hands are often an occupational problem which deserves attention from dermatologists. Urea is found in the skin as a component of the natural moisturizing factor and of sweat.
View Article and Find Full Text PDFStacked hetero-structures of two-dimensional materials allow for a design of interactions with corresponding electronic and mechanical properties. We report structure, work function, and frictional properties of 1 to 4 layers of MoS grown by chemical vapor deposition on epitaxial graphene on SiC(0001). Experiments were performed by atomic force microscopy in ultra-high vacuum.
View Article and Find Full Text PDF