Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFWe present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutations of atoms, and has some degree of isometry with the space of conformations. We use these representations to train a nondeep machine learning algorithm to classify the binding between pockets and molecule pairs and show that this approach has a better generalization capability than existing methods.
View Article and Find Full Text PDFThe -N(CH) residue is present in acetylcholine (ACh) and in many of its analogues which are used as selective ACh agonist or antagonists for human therapy. The X-ray structures of four ACh derivatives show the presence of short and linear contacts between the C atoms of -N(CH) groups and lone pair possessing atoms. These contacts can be rationalized as tetrel bonds (TtBs) thanks to their geometric features.
View Article and Find Full Text PDFThe electrostatic attraction between charges of opposite signs and the repulsion between charges of the same sign are ubiquitous and influential phenomena in recognition and self-assembly processes. However, it has been recently revealed that specific attractive forces between ions with the same sign are relatively common. These forces can be strong enough to overcome the Coulomb repulsion between ions with the same sign, leading to the formation of stable anion⋯anion and cation⋯cation adducts.
View Article and Find Full Text PDFAdducts between OsO and Lewis bases exert a role in important oxidation processes such as epoxidation and dihydroxylation. It has been shown that the attractive interaction driving the formation of these adducts is a σ-hole bond involving the metal as the electrophilic species; the term Osme Bond (OmB) was proposed for designating it. Here some new adducts between OsO and various bases have been characterized through single crystal x-ray diffraction (XRD) and computational studies (density functional theory, DFT), confirming the existence of a robust correlation between σ-hole interaction energy and deformation of the tetrahedral geometry of OsO.
View Article and Find Full Text PDF