Exosomes are a subset of extracellular vesicles (EVs) that are released by cells and play a variety of physiological roles including regulation of the immune system. Exosomes are heterogeneous and present in vast numbers in tumor microenvironments. A large subset of these vesicles has been demonstrated to be immunosuppressive.
View Article and Find Full Text PDFBackground: The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME.
View Article and Find Full Text PDFThe safety and efficacy of several life-saving therapeutic proteins are compromised due to their immunogenicity. Once a sustained immune response against a protein-based therapy is established, clinical options that are safe and cost-effective become limited. Prevention of immunogenicity of therapeutic proteins prior to their initial use is critical as it is often difficult to reverse an established immune response.
View Article and Find Full Text PDFObjectives: With a rapidly growing list of candidate immune-based cancer therapeutics, there is a critical need to generate highly reliable animal models to preclinically evaluate the efficacy of emerging immune-based therapies, facilitating successful clinical translation. Our aim was to design and validate a novel model (called Xenomimetic or 'X' mouse) that allows monitoring of the ability of human tumor-specific T cells to suppress tumor growth following their entry into the tumor.
Methods: Tumor xenografts are established rapidly in the greater omentum of globally immunodeficient NOD- (NSG) mice following an intraperitoneal injection of melanoma target cells expressing tumor neoantigen peptides, as well as green fluorescent protein and/or luciferase.
: T cells present in chronic inflammatory tissues such as nasal polyps (from chronic rhinosinusitis patients) have been demonstrated to be hypo-responsive to activation via the TCR, similar to tumor-specific T cells in multiple different human tumor microenvironments. While immunosuppressive exosomes have been known to contribute to the failure of the tumor-associated T cells to respond optimally to activation stimuli, it is not known whether they play a similar role in chronic inflammatory microenvironments. In the current study, we investigate whether exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells.
View Article and Find Full Text PDF