Publications by authors named "R Baldi"

Coordinated activity of basolateral amygdala (BLA) GABAergic interneurons (INs) and glutamatergic principal cells (PCs) is critical for associative learning, however the microcircuit organization-function relationships of distinct IN classes remain uncertain. Here, we show somatostatin (SOM) INs provide inhibition onto, and are excited by, local PCs, whereas vasoactive intestinal peptide (VIP) INs are driven by extrinsic afferents. Parvalbumin (PV) INs inhibit PCs and are activated by local and extrinsic inputs.

View Article and Find Full Text PDF

The loss of sensitivity of the upper limb due to neurological injuries severely limits the ability to manipulate objects, hindering personal independence. Non-invasive augmented sensory feedback techniques are used to promote neural plasticity hence to restore the grasping function. This work presents a wearable device for restoring sensorimotor hand functions based on Discrete Event-driven Sensory Control policy.

View Article and Find Full Text PDF

Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury.

View Article and Find Full Text PDF

Precision was not a quality expected from ordinary watches in the eighteenth century, which required specific maintenance to function correctly. The precautions to be taken to ensure the accuracy of pocket chronometers, whose going would influence navigation or the results of scientific activities, were even more vital. However, the remarkable attention that horological studies have devoted to the origins of chronometry has neglected these aspects.

View Article and Find Full Text PDF

Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs.

View Article and Find Full Text PDF