Publications by authors named "R Baffa"

Purpose: CT041 is a chimeric antigen receptor (CAR)-modified T-cell therapy that specifically targets claudin18.2 in solid tumors. Here, we report the pooled analysis results of two exploratory clinical trials to evaluate CT041 in patients with previously treated pancreatic cancer (PC).

View Article and Find Full Text PDF

Glycosylation is a complex multienzyme-related process that is frequently deregulated in cancer. Aberrant glycosylation can lead to the generation of novel tumor surface-specific glycotopes that can be targeted by antibodies. Murine DS6 mAb (muDS6) was generated from serous ovary adenocarcinoma immunization.

View Article and Find Full Text PDF

The recent advent of immunomodulatory therapies into the clinic has demanded the identification of innovative predictive biomarkers to identify patients most likely to respond to immunotherapy and support the design of tailored clinical trials. Current molecular testing for selection of patients with gastrointestinal or pulmonary carcinomas relies on the prevalence of PD-L1 expression in tumor as well as immune cells by immunohistochemistry and/or on the evaluation of the microsatellite status. Tumor Mutational Burden (TMB) has emerged as a promising novel biomarker in this setting to further aid in patient selection.

View Article and Find Full Text PDF

Background PF-06650808 is a novel anti-Notch3 antibody-drug conjugate (ADC) able to deliver an auristatin-based cytotoxic payload to target cells. In this first-in-human, dose-finding, phase I study (NCT02129205), we investigated safety, pharmacokinetics, immunogenicity, and preliminary antitumor activity of single-agent PF-06650808 in 40 patients with advanced breast cancer (BC) and other solid tumors unselected for Notch3 expression. Primary endpoint was dose-limiting toxicity (DLT).

View Article and Find Full Text PDF

PF-06647263, a novel antibody-drug conjugate consisting of an anti-EFNA4 antibody linked to a calicheamicin payload, has shown potent antitumor activity in human xenograft tumor models, including triple-negative breast cancer (TNBC). In the dose-escalation part 1 of this multicenter, open-label, phase I study (NCT02078752), successive cohorts of patients (n, 48) with advanced solid tumors and no available standard therapy received PF-06647263 every 3 weeks (Q3W) or every week (QW), following a modified toxicity probability interval (mTPI) method (initial dosing: 0.015 mg/kg Q3W).

View Article and Find Full Text PDF