To address the outstanding task of detecting entanglement in large quantum systems, entanglement witnesses have emerged, addressing the separable nature of a state. Yet optimizing witnesses, or accessing them experimentally, often remains a challenge. We here introduce a family of entanglement witnesses for open quantum systems.
View Article and Find Full Text PDFWe present a single-shot method to measure motional states in the number basis. The technique can be applied to systems with at least three nondegenerate energy levels which can be coupled to a linear quantum harmonic oscillator. The method relies on probing an Autler-Townes splitting that arises when a phonon-number changing transition is strongly coupled.
View Article and Find Full Text PDFWe propose a general scheme to generate entanglement encoded in the photon-number basis, via a sequential resonant two-photon excitation of a three-level system. We apply it to the specific case of a quantum dot three-level system, which can emit a photon pair through a biexciton-exciton cascade. The state generated in our scheme constitutes a tool for secure communication, as the multipartite correlations present in the produced state may provide an enhanced rate of secret communication with respect to a perfect GHZ state.
View Article and Find Full Text PDFPhys Rev Lett
February 2023
Eur Phys J D At Mol Opt Phys
December 2022
The Siegert relation relates field and intensity temporal correlations. After a historical review of the Siegert relation and the Hanbury Brown and Twiss effect, we discuss the validity of this relation in two different domains. We first show that this relation can be used in astrophysics to determine the fundamental parameters of stars, and that it is especially important for the observation with stellar emission lines.
View Article and Find Full Text PDF