This research program investigated the effects of layer thickness (50 µm and 100 µm) on the microstructure and mechanical properties of electron beam powder bed fusion (EBPBF) additive manufacturing of Inconel 625 alloy. The as-built 50 µm and 100 µm layer thickness components were also heat treated at temperatures above 1100 °C which produced a recrystallized grain structure containing annealing twins in the 50 µm layer thickness components, and a duplex grain structure consisting of islands of very small equiaxed grains dispersed in a recrystallized, large-grain structure containing annealing twins. The heat-treated components of the microstructures and mechanical properties were compared with the as-built components in both the build direction (vertical) and perpendicular (horizontal) to the build direction.
View Article and Find Full Text PDFMicroalgae can add value to biological wastewater treatment processes by capturing carbon and nutrients and producing valuable biomass. Harvesting small cells from liquid media is a challenge easily addressed with biofilm cultivation. Three experimental photobioreactors were constructed from inexpensive materials (e.
View Article and Find Full Text PDFAn unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6.
View Article and Find Full Text PDFMass casualty incidents such as those that are being experienced during the novel coronavirus disease (COVID-19) pandemic can overwhelm local healthcare systems, where the number of casualties exceeds local resources and capabilities in a short period of time. The influx of patients with lung function deterioration as a result of COVID-19 has strained traditional ventilator supplies. To bridge the gap during ventilator shortages and to help clinicians triage patients, manual resuscitator devices can be used to deliver respirations to a patient requiring breathing support.
View Article and Find Full Text PDF