Publications by authors named "R B Seal"

Rationale: Vein calcite in Devils Hole has been precipitating continuously in oxygen-isotope equilibrium at a constant temperature for over 500 000 years, providing an unmatched δO paleoclimate time series. A substantial issue is that coeval calcite (based on matching δO values) has uranium-series ages differing by 12 000 years.

Methods: An unparalleled high-accuracy δO chronology series from continuously submerged calcite was used to correct the published uranium-series ages of non-continuously formed calcite in two cores, cyclically exposed by water-table decline during glacial-interglacial transitions.

View Article and Find Full Text PDF

Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology.

View Article and Find Full Text PDF

The neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision-making, where lateralization of function may be less important. This study contrasted the topographic precision of cell-type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes.

View Article and Find Full Text PDF

The cardinal symptoms of Parkinson's disease (PD) such as bradykinesia and akinesia are debilitating, and treatment options remain inadequate. The loss of nigrostriatal dopamine neurons in PD produces motor symptoms by shifting the balance of striatal output from the direct (go) to indirect (no-go) pathway in large part through changes in the excitatory connections and intrinsic excitabilities of the striatal projection neurons (SPNs). Here, we report using two different experimental models that a transient increase in striatal dopamine and enhanced D1 receptor activation, during 6-OHDA dopamine depletion, prevent the loss of mature spines and dendritic arbors on direct pathway projection neurons (dSPNs) and normal motor behavior for up to 5 months.

View Article and Find Full Text PDF

Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide.

View Article and Find Full Text PDF