Alkaline sodium hydroxide/sodium silicate-activating high-purity metakaolin geopolymerization is described in terms of metakaolin deconstruction in tetrahedral hydrate silicate [O[Si(OH)]] and aluminate [Al(OH)] ionic precursors followed by their reassembling in linear and branched sialates monomers that randomly copolymerize into an irregular crosslinked aluminosilicate network. The novelty of the approach resides in the concurrent thermo-calorimetric (differential scanning calorimetry, DSC) and rheological (dynamic mechanical analysis, DMA) characterizations of the liquid slurry during the transformation into a gel and a structural glassy solid. Tests were run either in temperature scan (1 °C/min) or isothermal (20 °C, 30 °C, 40 °C) cure conditions.
View Article and Find Full Text PDFThis paper examines how extrusion-based 3D-printing technology is evolving, utilising geopolymers (GPs) as sustainable inorganic aluminosilicate materials. Particularly, the current state of 3D-printing geopolymers is critically examined in this study from the perspectives of the production process, printability need, mix design, early-age material features, and sustainability, with an emphasis on the effects of various elements including the examination of the fresh and hardened properties of 3D-printed geopolymers, depending on the matrix composition, reinforcement type, curing process, and printing configuration. The differences and potential of two-part and one-part geopolymers are also analysed.
View Article and Find Full Text PDFMagnesium AZ31 alloy has been chosen as bio-resorbable temporary prosthetic implants to investigate the degradation processes in a simulating body fluid (SBF) of the bare metal and the ones coated with low and high-molecular-weight PEO hydrogels. Hydrogel coatings are proposed to control the bioresorption rate of AZ31 alloy. The alloy was preliminary hydrothermally treated to form a magnesium hydroxide layer.
View Article and Find Full Text PDFAlthough geopolymers, as structural materials, should have superior engineering properties than traditional cementitious materials, they often need to improve their final characteristics' reproducibility due to the need for more control of the complex silico-aluminate decomposition and polymerisation stages. Thermosetting of a reactive geopolymeric paste involves tetrahedral Silicate and Aluminate precursor condensation into polyfunctional oligomers of progressively higher molecular weight, transforming the initial liquid into a gel and a structural solid. Viscosity and gelation control become particularly critical when the geopolymer is processed with 3D printing additive technology.
View Article and Find Full Text PDFBackground: Controlling the 3D movement of central incisors during tooth extraction cases with clear aligners is important but challenging in invisible orthodontic treatment. This study aimed to explore the biomechanical effects of central incisors in tooth extraction cases with clear aligners under different power ridge design schemes and propose appropriate advice for orthodontic clinic.
Methods: A series of Finite Element models was constructed to simulate anterior teeth retraction or no retraction with different power ridge designs.