Publications by authors named "R Assenberg"

Non-ionic surfactants such as Polysorbate 20/ 80 (PS20/ PS80), are commonly used in protein drug formulations to increase protein stability by protecting against interfacial stress and surface absorption. Polysorbate is susceptible to degradation which can impact product stability, leading to the formation of sub-visible and/or visible particles in the drug product during its shelf-life, affecting patient safety and efficacy. Therefore, it is important to monitor polysorbate concentration in drug product formulations of biotherapeutic drugs.

View Article and Find Full Text PDF

Polysorbate (PS) 20 and 80 are the most common surfactants in monoclonal antibody (mAb) drug product (DP) formulations. Residual host cell proteins (HCP) present at extremely low concentrations in DP formulations can maintain enough enzymatic activity to degrade PS surfactants. Over time, the hydrolysis of surfactant causes the accumulation of minimally soluble free fatty acids resulting in precipitation and formation of subvisible and visible particulates.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin-proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelling of CRLs is initiated by CSN-catalysed cleavage of the ubiquitin-like activator NEDD8 from CRLs.

View Article and Find Full Text PDF

The use of baculoviruses has become a standard approach in many labs for recombinant protein production. In addition to giving a broad and practical overview of the technology, this chapter focuses in particular on two recent developments in the field and how these can be efficiently exploited for protein production: the use of baculovirus-infected insect cells and in vivo recombination-mediated production of recombinant viruses.

View Article and Find Full Text PDF

Protein production for structural and biophysical studies, functional assays, biomarkers, mechanistic studies in vitro and in vivo, but also for therapeutic applications in pharma, biotech and academia has evolved into a mature discipline in recent years. Due to the increased emphasis on biopharmaceuticals, the growing demand for proteins used for structural and biophysical studies, the impact of genomics technologies on the analysis of large sets of structurally diverse proteins, and the increasing complexity of disease targets, the interest in innovative approaches for the expression, purification and characterisation of recombinant proteins has steadily increased over the years. In this review, we summarise recent developments in the field of recombinant protein expression for research use in pharma, biotech and academia.

View Article and Find Full Text PDF