Publications by authors named "R Asadollahi"

Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Zinc and RING finger 3 (ZNRF3) regulates Wnt/β-catenin signaling, crucial for brain development, but germline variants have not been linked to neurodevelopmental disorders (NDDs) before.
  • Researchers found 12 individuals with ZNRF3 variants, noting a correlation between specific mutations and NDD phenotypes, especially those affecting brain size.
  • Structural modeling and functional assays revealed that missense variants linked to larger brain size enhanced Wnt signaling, while a variant causing smaller brain size reduced it, indicating different mechanisms at play in NDDs related to ZNRF3 mutations.
View Article and Find Full Text PDF

Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.

View Article and Find Full Text PDF

Pathogenic bi-allelic variants in the SPG11 gene result in rare motor neuron disorders such as Hereditary Spastic Paraplegia type 11, Charcot-Marie Tooth, and Juvenile Amyotrophic Lateral Sclerosis-5. The main challenge in SPG11-linked disease research is the lack of antibodies against SPG11 encoded spatacsin. Here, we describe the CRISPR/Cas9 mediated generation and validation of an endogenously tagged SPG11- human iPSC line that contains an HA tag at the C-terminus of SPG11.

View Article and Find Full Text PDF

Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.

Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7.

View Article and Find Full Text PDF