Publications by authors named "R Arppe"

Fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) have enabled biologists to study processes of transport, binding, and enzymatic reactions in living cells. However, applying FCS and FCCS to samples such as whole blood and plasma is complicated as the fluorescence bursts of diffusing labels can be swamped by strong autofluorescence. Here we present cross-correlation spectroscopy based on two upconversion nanoparticles emitting at different wavelengths on the anti-Stokes side of a single excitation laser.

View Article and Find Full Text PDF

Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption.

View Article and Find Full Text PDF

The popularity of fluorescence microscopy arises from the inherent mode of action, where the fluorescence emission from probes is used to visualize selected features on a presumed dark background. However, the background is rarely truly dark, and image processing and analysis is needed to enhance the fluorescent signal that is ascribed to the selected feature. The image acquisition is facilitated by using considerable illumination, bright probes at a relatively high concentration in order to make the fluorescent signal significantly more intense than the background signal.

View Article and Find Full Text PDF

Detailed imaging of biological structures, often smaller than the diffraction limit, is possible in fluorescence microscopy due to the molecular size and photophysical properties of fluorescent probes. Advances in hardware and multiple providers of high-end bioimaging makes comparing images between studies and between research groups very difficult. Therefore, we suggest a model system to benchmark instrumentation, methods and staining procedures.

View Article and Find Full Text PDF

The luminescence intensity ratio (LIR) of the green emissions of the near-infrared excited NaYF :Yb ,Er nanocrystals is a promising method for temperature sensing. Here, the influence of excitation power density, excitation pulse length, excitation wavelength, silica shell, and solvent on the LIR and its temperature response is reported. The primary objective is to study the LIR mechanism and the impact of measurement and environmental parameters on the calibration and precision of the LIR.

View Article and Find Full Text PDF