Publications by authors named "R Arenal"

The burgeoning field of 2D heterostructures targets the combination of 2D materials with 3D, 1D, or 0D nanomaterials. Among the most popular 2D materials, the 2H polytype of molybdenum disulfide (MoS) features a well-defined bandgap that becomes direct at the monolayer level, which can be exploited for photodetection. A notable limitation of 2H-MoS is its curtailed absorbance beyond the visible range.

View Article and Find Full Text PDF

We explore the possibility to perform an in-situ transmission electron microscopy (TEM) thermoelectric characterization of materials. A differential heating element on a custom in-situ TEM microchip allows to generate a temperature gradient across the studied materials, which are simultaneously measured electrically. A thermovoltage was induced in all studied devices, whose sign corresponds to the sign of the Seebeck coefficient of the tested materials.

View Article and Find Full Text PDF
Article Synopsis
  • 2D materials, such as transition metal-dichalcogenides like MoS, have gained significant attention for their unique layered structures, which lead to distinct physicochemical properties when isolated as single layers compared to their bulk forms.
  • The ability to stack and twist these layers creates new phenomena, such as Moiré patterns, while misfit layer compounds (MLCs) introduce unconventional lattice structures that allow for the formation of nanotubes.
  • The stability and behavior of these nanostructures, particularly under elevated temperatures, are important aspects that remain underexplored, prompting studies using advanced techniques like electron microscopy and synchrotron-based X-ray methods to understand their decomposition and recrystallization processes.
View Article and Find Full Text PDF

The MXene family has rapidly expanded since its discovery in 2011 to include nearly 50 unique MXenes, not accounting for solid solutions and diverse surface terminations. However, a question raised since their discovery has been: What is the effect of ? In other words, how does the number of layers affect the MXene properties? To date, no direct study of the impact of has been conducted due to the lack of isoelemental MXene compositions spanning more than two values. Herein, we report on a system of three MXenes with identical M-site chemistries, (MoV)CT ( = 1, 2, and 3), allowing for the study of MXene structure-property relationships across , for the first time.

View Article and Find Full Text PDF
Article Synopsis
  • - Simple and fast methods to detect antibiotics in food and drinks are needed due to their widespread use in livestock, leading to drug residues in products.
  • - The study introduces gold nanoclusters (AuNCs) modified with -acetyl-l-cysteine, which can detect tetracyclines by showing a decrease in fluorescence at 700 nm as antibiotic concentration increases, with a detection limit of 0.8 ppm.
  • - This sensing method demonstrates high selectivity for tetracyclines over other substances like anions and metal ions, with fluorescence quenching explained through both dynamic and static mechanisms, primarily driven by photoinduced electron transfer (PET).
View Article and Find Full Text PDF