Publications by authors named "R Arche"

The variation with pH of the kinetic parameters of penicillin acylase from Kluyvera citrophila has been used to gain information about the chemical mechanism of the reaction catalysed by the enzyme. The pH-dependence of log (V/Km) for penicillin G showed that a group with a pK value over 4.7 must be deprotonated and that a group with a pK value over 9.

View Article and Find Full Text PDF

Penicillin acylase (PA) from Kluyvera citrophila was inhibited by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a specific carboxy-group-reactive reagent. Enzyme activity progressively decreased to a residual value depending on EEDQ concentration. Neither enzymic nor non-enzymic decomposition of EEDQ is concomitant with PA inactivation.

View Article and Find Full Text PDF

The site of reaction of penicillin acylase from Kluyvera citrophila with the potent inhibitor phenylmethanesulphonyl fluoride was investigated by incubating the inactivated enzyme with thioacetic acid to convert the side chain of the putative active-site serine residue to that of cysteine. The protein product contained one thiol group, which was reactive towards 2,2'-dipyridyl disulphide and iodoacetic acid. Carboxymethylcysteine was identified as the N-terminal residue of the beta-subunit of the carboxy[3H]methylthiol-protein.

View Article and Find Full Text PDF

Lysophosphatidylcholine: lysophosphatidylcholine acyltransferase is an enzyme that catalyses two reactions: hydrolysis of lysophosphatidylcholine and transacylation between two molecules of lysophosphatidylcholine to give disaturated phosphatidylcholine. Following the kinetic model previously proposed for this enzyme [Martín, Pérez-Gil, Acebal & Arche (1990) Biochem. J.

View Article and Find Full Text PDF

Oligonucleotide-directed mutagenesis has been used to obtain specific changes in the penicillin acylase gene from Kluyvera citrophila. Wild-type and mutant proteins were purified and the kinetic constants for different substrates were determined. Mutations in Met168 highly decreased the specificity constant of the enzyme for penicillin G, penicillin V and phenylacetyl-4-aminobenzoic acid and the catalytic constant kcat for phenylacetyl-4-aminobenzoic acid.

View Article and Find Full Text PDF