Background: Numerous pharmacokinetic models have been published aiming at more accurate and safer dosing of dexmedetomidine. The vast majority of the developed models underpredict the measured plasma concentrations with respect to the target concentration, especially at plasma concentrations higher than those used in the original studies. The aim of this article was to develop a dexmedetomidine pharmacokinetic model in healthy adults emphasizing linear versus nonlinear kinetics.
View Article and Find Full Text PDFPurpose: Regulation of spontaneous breathing is highly complex and may be influenced by drugs administered during the perioperative period. Because of their different pharmacological properties we hypothesized that midazolam and s-ketamine exert different effects on the variability of minute ventilation (MV), tidal volume (TV) and respiratory rate (RR).
Methods: Patients undergoing procedural sedation (PSA) with propofol and remifentanil received a single dose of midazolam (1-3 mg, n = 10) or s-ketamine (10-25 mg, n = 10).
The respiratory system reacts instantaneously to intrinsic and extrinsic inputs. This adaptability results in significant fluctuations in breathing parameters, such as respiratory rate, tidal volume, and inspiratory flow profiles. Breathing variability is influenced by several conditions, including sleep, various pulmonary diseases, hypoxia, and anxiety disorders.
View Article and Find Full Text PDFMonitoring of postoperative pulmonary function usually includes respiratory rate and oxygen saturation measurements. We hypothesized that changes in postoperative respiratory rate do not correlate with changes in tidal volume or minute ventilation. In addition, we hypothesized that variability of minute ventilation and tidal volume is larger than variability of respiratory rate.
View Article and Find Full Text PDFA model for the homeostasis of glucose through the regulating hormones glucagon and insulin is described. It contains a subsystem that models the internalization of the glucagon receptor. Internalization is a mechanism in cell signaling, through which G-protein coupled receptors are taken from the surface of the cell to the endosome.
View Article and Find Full Text PDF