Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models.
View Article and Find Full Text PDFCoarse-grained (CG) molecular dynamics (MD) simulations have grown in applicability over the years. The recently released version of the Martini CG force field (Martini 3) has been successfully applied to simulate many processes, including protein-ligand binding. However, the current ligand parametrization scheme is manual and requires an a priori reference all-atom (AA) simulation for benchmarking.
View Article and Find Full Text PDFStretchable light-emitting materials are the key components for realizing skin-like displays and optical biostimulation. All the stretchable emitters reported to date, to the best of our knowledge, have been based on electroluminescent polymers that only harness singlet excitons, limiting their theoretical quantum yield to 25%. Here we present a design concept for imparting stretchability onto electroluminescent polymers that can harness all the excitons through thermally activated delayed fluorescence, thereby reaching a near-unity theoretical quantum yield.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2022
High dielectric constant organic semiconductors, often obtained by the use of ethylene glycol (EG) side chains, have gained attention in recent years in the efforts of improving the device performance for various applications. Dielectric constant enhancements due to EGs have been demonstrated extensively, but various effects, such as the choice of the particular molecule and the frequency and temperature regime, that determine the extent of this enhancement require further understanding. In this work, we study these effects by means of polarizable molecular dynamics simulations on a carefully selected set of fullerene derivatives with EG side chains.
View Article and Find Full Text PDF