The reorganization through high-temperature annealing of closely-packed pore arrays can be exploited to create ultra-thin (<20 µm) monocrystalline silicon layers that can work as cheap and flexible substrates for both the electronic and the photovoltaic industries. By introducing a periodic diameter modulation along deep etched pores, many thin layers can be produced from a single substrate and in a single technological process. Besides the periodicity, the exact shape of the modulation also has a profound impact on the process and subtle profile changes can lead to important differences on the process outcome.
View Article and Find Full Text PDFThe nanostructuring of silicon surfaces--known as black silicon--is a promising approach to eliminate front-surface reflection in photovoltaic devices without the need for a conventional antireflection coating. This might lead to both an increase in efficiency and a reduction in the manufacturing costs of solar cells. However, all previous attempts to integrate black silicon into solar cells have resulted in cell efficiencies well below 20% due to the increased charge carrier recombination at the nanostructured surface.
View Article and Find Full Text PDFSilicon is the material of choice for visible light photodetection and solar cell fabrication. However, due to the intrinsic band gap properties of silicon, most infrared photons are energetically useless. Here, we show the first example of a photodiode developed on a micrometre scale sphere made of polycrystalline silicon whose photocurrent shows the Mie modes of a classical spherical resonator.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2013
The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers.
View Article and Find Full Text PDFIn this Letter we report on the thermal properties of macroporous silicon photonic crystals with the unit cell gradually varied along the pore axis. We show experimentally that arbitrarily large omnidirectional total-reflectance bands can be produced with such structures. We also demonstrate that those bands can be effectively used to reduce thermal radiation in large spectral bands.
View Article and Find Full Text PDF