Background: Line-field confocal optical coherence tomography (LC-OCT) is an emerging diagnostic tool with imaging depth reaching ~400 μm and a novel three-dimensional (3D) cube providing cellular resolution. As far as we are aware, there are only a limited number of papers that have reported diagnostic criteria for melanocytic lesions using this technique, and none of them have been multicentric.
Objectives: Our aim was to establish the diagnostic criteria for melanocytic lesions using LC-OCT and identify the most significant architectural and cytologic features associated with malignancy.
Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations.
View Article and Find Full Text PDFBackground: Early melanoma detection is the main factor affecting prognosis and survival. For that reason, non-invasive technologies have been developed to provide a more accurate diagnosis. Recently, line-field confocal optical coherence tomography (LC-OCT) was developed to provide an in vivo, imaging device, with deep penetration and cellular resolution in three dimensions.
View Article and Find Full Text PDFThe regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus.
View Article and Find Full Text PDFUnlabelled: Low-intensity maintenance therapy with 6-mercaptopurine (6-MP) limits the occurrence of acute lymphoblastic leukemia (ALL) relapse and is central to the success of multiagent chemotherapy protocols. Activating mutations in the 5'-nucleotidase cytosolic II (NT5C2) gene drive resistance to 6-MP in over 35% of early relapse ALL cases. Here we identify CRCD2 as a first-in-class small-molecule NT5C2 nucleotidase inhibitor broadly active against leukemias bearing highly prevalent relapse-associated mutant forms of NT5C2 in vitro and in vivo.
View Article and Find Full Text PDF