Background: Although hypercholesterolemia reportedly counteracts lymphocyte trafficking across lymphatic vessels, the roles of lymphatic endothelial cells (LECs) in the lymphocyte regulations remain unclear. Previous studies showed that calpain-an intracellular modulatory protease-interferes with leukocyte dynamics in the blood microcirculation and is associated with hypercholesterolemic dysfunction in vascular endothelial cells.
Methods: This study investigated whether the calpain systems in LECs associate with the LEC-lymphocyte interaction under hypercholesterolemia using gene-targeted mice.
Free amino acids that accumulate in the plasma of patients with diabetes and obesity influence lipid metabolism and protein synthesis in the liver. The stress-inducible intracellular protease calpain proteolyzes various substrates in vascular endothelial cells (ECs), although its contribution to the supply of free amino acids in the liver microenvironment remains enigmatic. In the present study, we showed that calpains are associated with free amino acid production in cultured ECs.
View Article and Find Full Text PDFBackground: Normalization of the stromal microenvironment is a promising strategy for cancer control. Cancer-associated fibroblasts, tumor-associated macrophages, and mesenchymal stromal cells have a central role in stromal functions. Accordingly, understanding these stromal cells is indispensable for the development of next-generation cancer therapies.
View Article and Find Full Text PDFVascular endothelial cells (ECs) make up the innermost surface of arteries, veins, and capillaries, separating the remaining layers of the vessel wall from circulating blood. Under non-inflammatory conditions, ECs are quiescent and form a robust barrier structure; however, exposure to inflammatory stimuli induces changes in the expression of EC proteins that control transcellular permeability and facilitate angiogenic tube formation. Increasing evidence suggests that dysfunction in intracellular proteolytic systems disturbs EC adaptation to the inflammatory environment, leading to vascular disorders such as atherosclerosis and pathological angiogenesis.
View Article and Find Full Text PDFGerm cell-specific ATP-dependent RNA helicase, the product of the mouse vasa homolog (Mvh), has been shown to play an essential role in the development of the male germ cell. In male Mvh knockout mice, premeiotic germ cells arrest at the zygotene stage. To investigate the role of MVH protein in the progression of meiosis, we searched for genes encoding partners that interact with MVH in testicular germ cells.
View Article and Find Full Text PDF