Occup Med (Lond)
September 2024
Research algorithms are seldom externally validated or integrated into clinical practice, leaving unknown challenges in deployment. In such efforts, one needs to address challenges related to data harmonization, the performance of an algorithm in unforeseen missingness, automation and monitoring of predictions, and legal frameworks. We here describe the deployment of a high-dimensional data-driven decision support model into an EHR and derive practical guidelines informed by this deployment that includes the necessary processes, stakeholders and design requirements for a successful deployment.
View Article and Find Full Text PDFBackground: Insulin resistance (IR) is associated with increased cardiovascular disease risk, and with increased all-cause, cardiovascular, and cancer mortality. A number of surrogate markers are used in clinical practice to diagnose IR. The aim of this study was to investigate the discriminatory power of a number of routinely available anthropometric and biochemical variables in predicting IR and to determine their optimal cutoffs.
View Article and Find Full Text PDFBackground: Type 2 diabetes (T2DM) is genetically heterogenous, driven by beta cell dysfunction and insulin resistance. Insulin resistance drives the development of cardiometabolic complications and is typically associated with obesity. A group of common variants at eleven loci are associated with insulin resistance and risk of both type 2 diabetes and coronary artery disease.
View Article and Find Full Text PDF