Mammalian Toll-like receptor 5 (TLR5) senses flagellin of several bacterial species and activates the innate immune system. The avian TLR repertoire exhibits considerable functional diversity compared to mammalian TLRs and evidence of a functional TLR5 in the avian species is lacking. In the present study we cloned and successfully expressed chicken TLR5 (chTLR5) in HeLa cells, as indicated by laser confocal microscopy.
View Article and Find Full Text PDFThe ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only.
View Article and Find Full Text PDFToll-like receptors (TLR) 2, TLR4 and TLR5 are primary mucosal sensors of microbial patterns. Dissection of the cross-talk between TLRs in intestinal cells has thus far been hampered by the lack of functional TLR2 and TLR4 in in vitro model systems. Here we report that the mouse intestinal epithelial cell line mIC(cl2) expresses these TLRs and that receptor expression and function are regulated by environmental TLR stimuli.
View Article and Find Full Text PDFJ Am Soc Nephrol
November 2004
p-Aminohippurate (PAH) is the classical substrate used in the characterization of organic anion transport in renal proximal tubular cells. Although basolateral transporters for PAH uptake from blood into the cell have been well characterized, there is still little knowledge on the apical urinary efflux transporters. The multidrug resistance protein 2 (MRP2/ABCC2) is localized to the apical membrane and mediates ATP-dependent PAH transport, but its contribution to urinary PAH excretion is not known.
View Article and Find Full Text PDFThe end product of human purine metabolism is urate, which is produced primarily in the liver and excreted by the kidney through a well-defined basolateral blood-to-cell uptake step. However, the apical cell-to-urine efflux mechanism is as yet unidentified. Here, we show that the renal apical organic anion efflux transporter human multidrug resistance protein 4 (MRP4), but not apical MRP2, mediates ATP-dependent urate transport via a positive cooperative mechanism (K(m) of 1.
View Article and Find Full Text PDF