Publications by authors named "R A de la Chica"

The ability to create efficient artificial enzymes for any chemical reaction is of great interest. Here, we describe a computational design method for increasing the catalytic efficiency of de novo enzymes by several orders of magnitude without relying on directed evolution and high-throughput screening. Using structural ensembles generated from dynamics-based refinement against X-ray diffraction data collected from crystals of Kemp eliminases HG3 (/ 125 M s) and KE70 (/ 57 M s), we design from each enzyme ≤10 sequences predicted to catalyze this reaction more efficiently.

View Article and Find Full Text PDF

The ability to create efficient artificial enzymes for any chemical reaction is of great interest. Here, we describe a computational design method for increasing catalytic efficiency of enzymes to a level comparable to their natural counterparts without relying on directed evolution. Using structural ensembles generated from dynamics-based refinement against X-ray diffraction data collected from crystals of Kemp eliminases HG3 (/ 125 M s) and KE70 (/ 57 M s), we design from each enzyme ≤10 sequences predicted to catalyze this reaction more efficiently.

View Article and Find Full Text PDF

Structural plasticity of enzymes dictates their function. Yet, our ability to rationally remodel enzyme conformational landscapes to tailor catalytic properties remains limited. Here, we report a computational procedure for tuning conformational landscapes that is based on multistate design of hinge-mediated domain motions.

View Article and Find Full Text PDF