Publications by authors named "R A Zierenberg"

Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, , situated in the Southern Pescadero Basin within the Gulf of California.

View Article and Find Full Text PDF

Hydrothermal vent communities are distributed along mid-ocean spreading ridges as isolated patches. While distance is a key factor influencing connectivity among sites, habitat characteristics are also critical. The Pescadero Basin (PB) and Alarcón Rise (AR) vent fields, recently discovered in the southern Gulf of California, are bounded by previously known vent localities (e.

View Article and Find Full Text PDF

Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years.

View Article and Find Full Text PDF

Clear Lake, California, USA, is the site of the Sulphur Bank Mercury Mine, now a U.S. Environmental Protection Agency Superfund Site.

View Article and Find Full Text PDF

Sediment cores were collected to investigate multiple stresses on Clear Lake, California, USA, through the period of European occupation to the present day. Earlier workers suggested the hypothesis that the use of mechanized earthmoving equipment, starting in the 1920s and 1930s, was responsible for erosion, mercury (Hg) contamination, and habitat loss stresses. Cores (approximately 2.

View Article and Find Full Text PDF