Publications by authors named "R A Wheatley"

A single-shot non-interferometric ultrashort-pulse measurement method based on the dispersion scan (d-scan) technique with a substantially extended time span for the pulses to be measured is presented. While single-shot d-scan is typically used for rather short femtosecond pulses, the presented multiple-reflections d-scan (MR d-scan) technique allows measurement of both short and long femtosecond pulses. Single-shot d-scan is currently limited to pulses with a maximum duration of 60 fs using a chromatic dispersion, i.

View Article and Find Full Text PDF

The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen and the respiratory microbiome as our model system.

View Article and Find Full Text PDF

Unlabelled: Rhizobial attachment to host legume roots is the first physical interaction of bacteria and plants in symbiotic nitrogen fixation. The pH-dependent primary attachment of biovar viciae 3841 to (pea) roots was investigated by genome-wide insertion sequencing, luminescence-based attachment assays, and proteomic analysis. Under acid, neutral, or alkaline pH, a total of 115 genes are needed for primary attachment under one or more environmental pH, with 22 genes required for all.

View Article and Find Full Text PDF

In this study, we present a novel method for fabricating semi-transparent electrodes by combining silver nanowires (AgNW) with titanium nitride (TiN) layers, resulting in conductive nanocomposite coatings with exceptional electromechanical properties. These nanocomposites were deposited on cellulose nanopaper (CNP) using a plasma-enhanced pulsed laser deposition (PE-PLD) technique at low temperatures (below 200 °C). Repetitive bending tests demonstrate that incorporating AgNW into TiN coatings significantly enhances the microstructure, increasing the electrode's electromechanical robustness by up to four orders of magnitude compared to commercial PET/ITO substrates.

View Article and Find Full Text PDF