The modern means of controlled irradiation by femtosecond lasers or swift heavy ion beams can transiently produce such energy densities in samples that reach collective electronic excitation levels of the warm dense matter state, where the potential energy of interaction of the particles is comparable to their kinetic energies (temperatures of a few eV). Such massive electronic excitation severely alters the interatomic potentials, producing unusual nonequilibrium states of matter and different chemistry. We employ density functional theory and tight binding molecular dynamics formalisms to study the response of bulk water to ultrafast excitation of its electrons.
View Article and Find Full Text PDFAfter ultrafast laser irradiation, a target enters a poorly explored regime where physics of a solid state overlaps with plasma physics and chemistry, creating an unusual synergy-a warm dense matter state (WDM). We study theoretically the WDM kinetics and chemistry in a number of group III-metal oxides with highly excited electronic system. We employ density functional theory to investigate a possibility of nonthermal transition of the materials into a superionic state under these conditions.
View Article and Find Full Text PDFIt is known that covalently bonded materials undergo nonthermal structure transformations upon ultrafast excitation of an electronic system, whereas metals exhibit phonon hardening in the bulk. Here we study how ionic bonds react to electronic excitation. Density-functional molecular dynamics predicts that ionic crystals may melt nonthermally, however, into an electronically insulating state, in contrast to covalent materials.
View Article and Find Full Text PDF