Publications by authors named "R A Slutsky"

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF

Aneuploidy results in a stoichiometric imbalance of protein complexes that jeopardizes cellular fitness. Aneuploid cells thus need to compensate for the imbalanced DNA levels by regulating their RNA and protein levels, but the underlying molecular mechanisms remain unknown. In this study, we dissected multiple diploid versus aneuploid cell models.

View Article and Find Full Text PDF

Background: Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression.

View Article and Find Full Text PDF

Objectives Pregnant women are more susceptible to certain infections; however, this increased susceptibility is not fully understood. Herein, systems biology approaches were utilized to elucidate how pregnancy modulates tissue-specific host responses to a bacterial product, endotoxin. Methods Pregnant and non-pregnant mice were injected with endotoxin or saline on 16.

View Article and Find Full Text PDF

Sterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established.

View Article and Find Full Text PDF