Publications by authors named "R A Shalwitz"

Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision.

View Article and Find Full Text PDF

Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI.

View Article and Find Full Text PDF

Background: Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model.

Methods: Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.

View Article and Find Full Text PDF

Pharmacological stabilization of hypoxia-inducible factor (HIF) through prolyl hydroxylase (PHD) inhibition limits mucosal damage associated with models of murine colitis. However, little is known about how PHD inhibitors (PHDi) influence systemic immune function during mucosal inflammation or the relative importance of immunological changes to mucosal protection. We hypothesized that PHDi enhances systemic innate immune responses to colitis-associated bacteremia.

View Article and Find Full Text PDF

Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro.

View Article and Find Full Text PDF