Cell-free DNA (cfDNA) has emerged as a pivotal player in precision medicine, revolutionizing the diagnostic and therapeutic landscape. While its clinical applications have significantly increased in recent years, current cfDNA assays have limited ability to identify the active transcriptional programs that govern complex disease phenotypes and capture the heterogeneity of the disease. To address these limitations, we have developed a non-invasive platform to enrich and examine the active chromatin fragments (cfDNA) in peripheral blood.
View Article and Find Full Text PDFPurpose: The size and location of infarct and penumbra are key to decision-making for acute ischemic stroke (AIS) management. CT perfusion (CTP) software estimate infarct and penumbra volume using contralateral hemisphere relative thresholding. This approach is not robust and widely contested by the scientific community.
View Article and Find Full Text PDFPurpose: Intracerebral Hemorrhage (ICH) is one of the most devastating types of strokes with mortality and morbidity rates ranging from about 51%-65% one year after diagnosis. Early hematoma expansion (HE) is a known cause of worsening neurological status of ICH patients. The goal of this study was to investigate whether non-contrast computed tomography imaging biomarkers (NCCT-IB) acquired at initial presentation can predict ICH growth in the acute stage.
View Article and Find Full Text PDFProc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib
May 2022
Purpose: Intracranial hemorrhage (ICH) is characterized as bleeding into the brain tissue, intracranial space, and ventricles and is the second most disabling form of stroke. Hematoma expansion (HE) following ICH has been correlated with significant neurological decline and death. For early detection of patients at risk, deep learning prediction models were developed to predict whether hematoma due to ICH will expand.
View Article and Find Full Text PDF