Fat and fructose are the two major components over-represented in the Western diet. The aim of this study was to determine the combined effects of different types of dietary fat and fructose on the development of nonalcoholic fatty liver disease (NAFLD) in a murine model. Eight-week-old male C57BL/6J mice were fed with high-fat diet enriched with saturated fat (HSF), or omega-6 polyunsaturated fat (n6HUSF), or omega-3 polyunsaturated fat (n3HUSF) with 42% of calories derived from the fat.
View Article and Find Full Text PDFDioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and mice (Taconic) were fed a control diet and exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks.
View Article and Find Full Text PDFBackground: High-level occupational vinyl chloride (VC) exposures have been associated with hepatic hemangiosarcoma, which typically develops following a long latency period. Although VC is genotoxic, a more comprehensive mode of action has not been determined and diagnostic biomarkers have not been established. The purpose of this study is to address these knowledge gaps through plasma metabolomics.
View Article and Find Full Text PDFBackground: Polychlorinated biphenyls (PCBs) are signaling disrupting chemicals that exacerbate nonalcoholic steatohepatitis (NASH) in mice. They are epidermal growth factor receptor (EGFR) inhibitors that enhance hepatic inflammation and fibrosis in mice.
Objectives: This study tested the hypothesis that epidermal growth factor (EGF) administration can attenuate PCB-related NASH by increasing hepatic EGFR signaling in a mouse model.
Background: Inadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis.
View Article and Find Full Text PDF