Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22.
View Article and Find Full Text PDFBi-specific T-cell engager antibodies (BiTEs) are synthetic fusion molecules that combine multiple antibody-binding domains to induce active contact between T-cells and antigen expressing cells in the body. Blinatumomab, a CD19-CD3 BiTE is now a widely used therapy for relapsed B-cell malignancies, and similar BiTE therapeutics have shown promise for treating various other forms of cancer. The current process for new BiTE development is time consuming and costly, requiring characterization of the individual antigen binding domains, followed by bi-specific design, protein production, purification, and eventually functional screening.
View Article and Find Full Text PDFEpidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs.
View Article and Find Full Text PDFGlycosylation of hydrophobic peptides at one terminus effectively increases their water-solubility, and conjugation through the opposing end to a carrier protein, renders them more immunogenic. Moreover, the glycosylation minimizes antibody responses to potentially deleterious, non-productive terminal neo-epitope regions of the peptides, and consequently shifts peptide immunogenicity towards the core amino acid residues. As proof of concept, glycopeptide-protein conjugates related to influenza hemagglutinin (HA), neuraminidase (NA), and the dimerization loop region of human epidermal growth factor receptor 2 (Her2), demonstrated a favorable production of core peptide specific antibodies as determined by ELISA studies.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) development involves extensive empirical characterization of antigen-binding domain (ABD)/CAR constructs for clinical suitability. Here, we present a cost-efficient and rapid method for evaluating CARs in human Jurkat T cells. Using a modular CAR plasmid, a highly efficient ABD cloning strategy, plasmid electroporation, short-term co-culture, and flow-cytometric detection of CD69, this assay (referred to as CAR-J) evaluates sensitivity and specificity for ABDs.
View Article and Find Full Text PDF