Objective: Insulin resistance is a key feature of Type 2 Diabetes (T2D), and improving insulin sensitivity is important for disease management. Allosteric modulation of the insulin receptor (IR) with monoclonal antibodies (mAbs) can enhance insulin sensitivity and restore glycemic control in animal models of T2D.
Methods: A novel human mAb, IRAB-A, was identified by phage screening using competition binding and surface plasmon resonance assays with the IR extracellular domain.
A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance.
View Article and Find Full Text PDFAlthough much speculation has surrounded intestinally expressed FcRn as a means for systemic uptake of orally administered immunoglobulin G (IgG), this has not been validated in translational models beyond neonates or in FcRn-expressing cells in vitro. Recently, IgG1 intestinal infusion acutely in anesthetized cynomolgus resulted in detectable serum monoclonal antibody (mAb) levels. In this study, we show that IgG2 has greater protease resistance to intestinal enzymes in vitro and mice in vivo, due to protease resistance in the hinge region.
View Article and Find Full Text PDFThe neonatal Fc receptor (FcRn) in intestinal epithelium is the primary mechanism for transfer of maternal immunoglobulin G (IgG) from suckled milk to serum; but the factors contributing to the rapid uptake of IgG are poorly understood. These studies help to determine the contribution of cell surface FcRn in IgG uptake in 2-week-old rat pups by varying local pH and binding conditions. Variants of a human wild-type (WT) IgG monoclonal antibody (mAb WT) were assessed for binding affinity (KD) to rat (r)FcRn at pH 6.
View Article and Find Full Text PDFThree-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures.
View Article and Find Full Text PDF