Carbon Balance Manag
September 2021
Background: One of the scientific challenges of understanding climate change has been determining the important drivers and metrics of global carbon (C) emissions and C cycling in tropical, subtropical, boreal, subarctic, and temperate peatlands. Peatlands account for 3% of global land cover, yet contain a major reservoir of 550 gigatons (Gt) of soil C, and serve as C sinks for 0.37 Gt of carbon dioxide (CO) a year.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
April 2002
Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa.
View Article and Find Full Text PDFThe 90,674 wildland fires that burned 2.9 million ha at an estimated suppression cost of $1.6 billion in the United States during the 2000 fire season demonstrated that forest fuel loading has become a hazard to life, property, and ecosystem health as a result of past fire exclusion policies and practices.
View Article and Find Full Text PDF