Scand J Immunol
December 2024
Recent work indicates that feralisation is not a simple reversal of domestication, and therefore raises questions about the predictability of evolution across replicated feral populations. In the present study we compare genes and traits of two independently established feral populations of chickens (Gallus gallus) that inhabit archipelagos within the Pacific and Atlantic regions to test for evolutionary parallelism and/or divergence. We find that feral populations from each region are genetically closer to one another than other domestic breeds, despite their geographical isolation and divergent colonisation histories.
View Article and Find Full Text PDFDNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals.
View Article and Find Full Text PDFIntroduction: Domestication is the process of modifying animals for human benefit through selective breeding in captivity. One of the traits that often diverges is the size of the brain and its constituent regions; almost all domesticated species have relatively smaller brains and brain regions than their wild ancestors. Although the effects of domestication on the brain have been investigated across a range of both mammal and bird species, almost nothing is known about the neuroanatomical effects of domestication on the world's most common bird: the chicken (Gallus gallus).
View Article and Find Full Text PDF