Publications by authors named "R A Heckman"

Premise: Leaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short.

View Article and Find Full Text PDF

C perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C perennial bioenergy grasses are predicted to thrive under climate change-C photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation.

View Article and Find Full Text PDF

Premise: Herbivore pressure can vary across the range of a species, resulting in different defensive strategies. If herbivory is greater at lower latitudes, plants may be better defended there, potentially driving a latitudinal gradient in defense. However, relationships that manifest across the entire range of a species may be confounded by differences within genetic subpopulations, which may obscure the drivers of these latitudinal gradients.

View Article and Find Full Text PDF

Disease may drive variation in host community structure by modifying the interplay of deterministic and stochastic processes that shape communities. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When communities have higher levels of disease and disease consistently selects for certain host species, this can reduce variation in host community composition.

View Article and Find Full Text PDF

Movement goals are an essential component of motor planning, altering voluntary and involuntary motor actions. While there have been many studies of motor planning, it is unclear if motor goals influence voluntary and involuntary movements at similar latencies. The objectives of this study were to determine how long it takes to prepare a motor action and to compare this time for voluntary and involuntary movements.

View Article and Find Full Text PDF