Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens.
View Article and Find Full Text PDFDNA integrity is crucial for organismal health, and assessing DNA damage in aquatic organisms is essential for identifying environmental threats and informing conservation efforts. Pollutants such as metals, hydrocarbons, agrochemicals, pharmaceuticals, and climate change are linked to genetic damage, oxidative stress, and mutagenesis in several species, such as elasmobranchs (sharks and rays). Most studies focus on bivalves, crustaceans, and bony fish, with fewer assessments being carried out in cartilaginous fish.
View Article and Find Full Text PDFAnthropogenic activities have increasingly contaminated aquatic ecosystems worldwide, requiring the development of adequate methods to assess the effects of environmental pollution on aquatic biota. Currently, ecotoxicological research on fish is largely based on in vivo studies, many times using post-mortem fish samples bought in fish markets or obtained through capture-and-release programs. However, such samples provide a narrow window to the cellular and molecular processes that occur to fish upon exposure to pollutants and other toxicants or pathogens.
View Article and Find Full Text PDFElasmobranchs, including sharks, rays, and skates, are a global protein source but face threats from overfishing and population declines. Despite their lower market value, increased consumption raises sustainability and public health concerns. Commonly landed species like the Blue Shark, Shortfin Mako, and Spiny Dogfish are particularly vulnerable to bioaccumulation of metals such as mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As), posing health risks to consumers.
View Article and Find Full Text PDFSharks, are highly vulnerable to fishing pressures, a key factor in their global population decline. Chemical pollution, however, especially metal and metalloid contamination, poses significant additional risks. Of around 520 shark species, about 170 are threatened, including the Sphyrna genus (hammerheads).
View Article and Find Full Text PDF