ACS Appl Mater Interfaces
November 2024
Thermal management is becoming one of the most significant design and size limitations for high power density electronics, including motherboards, power converters, and phased array antennas for 5G communications. There are few options for conducting heat away with dielectric materials that avoid shortening or distorting the performance of these electronics. Certain highly thermally conductive 2D and 3D materials, including hexagonal boron nitride and diamond, offer ideal material properties to address these issues but are extremely challenging to process.
View Article and Find Full Text PDFSuperhydrophobic materials rely on both chemical apolarity and surface roughness to achieve the high contact angles and the low roll-off angles that lead to self-cleaning and antibacterial properties. Current superhydrophobic coatings tend to be delicate and lose their properties easily when subjected to droplet impact. Such impact deteriorates these coatings through hydrodynamic wear; changing structure, eroding hydrophobic chemistry, and quickly leading to full wet out of the substrate.
View Article and Find Full Text PDFThermoforming processing, traditionally reserved for thermoplastic polymers and sheet metals, is extended here to boron-based all-ceramics. Specifically, sintered boron nitride composite sheets manufactured via a combined vibration and tape-casting photopolymerization process exhibit a highly oriented microstructure that allows these preform sheets to flow as viscous Bingham pseudoplastics during compression molding. These sintered all-ceramic preforms are thermoformed into thin, complex parts with features down to 200 µm.
View Article and Find Full Text PDFCalculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell's equations with a finite element solver. These approaches can take hours for simple configurations of three particles.
View Article and Find Full Text PDFMethadone is an opioid that often leads to fatalities. Interpretation of toxicological findings can be challenging if no further information about the case history is available. The aims of this study were (1) to determine whether brain/blood ratios can assist in the interpretation of methadone findings in fatalities; (2) to examine whether polymorphisms in the gene encoding the P-glycoprotein (also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1)), which functions as a multispecific efflux pump in the blood-brain barrier, affect brain/blood ratios of methadone.
View Article and Find Full Text PDF