Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation.
View Article and Find Full Text PDFGeneration of cAMP through G-coupled G protein-coupled receptor (GPCR) [e.g. β-adrenoceptor (βAR), adenosine A receptor (AR)] activation, induces arterial smooth muscle relaxation, counteracting the actions of vasoconstrictors.
View Article and Find Full Text PDFVasoconstrictor-driven G protein-coupled receptor (GPCR)/phospholipase C (PLC) signaling increases intracellular Ca concentration to mediate arterial contraction. To counteract vasoconstrictor-induced contraction, GPCR/PLC signaling can be desensitized by G protein-coupled receptor kinases (GRKs), with GRK2 playing a predominant role in isolated arterial smooth muscle cells. In this study, we use an array of GRK2 inhibitors to assess their effects on the desensitization of UTP and angiotensin II (AngII)-mediated arterial contractions.
View Article and Find Full Text PDFThe structurally related, but distinct neuropeptides, neuromedin U (NmU) and neuromedin S (NmS) are ligands of two G protein-coupled NmU receptors (NMU1 and NMU2). Hypothalamic NMU2 regulates feeding behavior and energy expenditure and has therapeutic potential as an anti-obesity target, making an understanding of its signaling and regulation of particular interest. NMU2 binds both NmU and NmS with high affinity, resulting in receptor-ligand co-internalization.
View Article and Find Full Text PDFNitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential.
View Article and Find Full Text PDF