Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years.
View Article and Find Full Text PDFLevels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates.
View Article and Find Full Text PDFThere is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019-2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions. We performed a simulation experiment to test the effects of different rates of prescribed burning treatment on risks posed by wildfire to life, property and infrastructure.
View Article and Find Full Text PDFContext: Logging and wildfire can reduce the height of the forest canopy and the distance to the understorey vegetation below. These conditions may increase the likelihood of high severity wildfire (canopy scorch or consumption), which may explain the greater prevalence of high severity wildfire in some recently logged or burnt forests. However, the effects of these structural characteristics on wildfire severity have not clearly been demonstrated.
View Article and Find Full Text PDF