Publications by authors named "R A Ageldinov"

Neuroinflammation can be an important factor of many disorders in central nervous system (CNS) including cognitive dysfunction, affective disorders, and addictive behavior associated with prenatal alcohol exposure and presented in early adulthood. In this study we used an experimental rodent model of prenatal alcohol (PA) exposure (consumption of a 10% ethanol solution by female Wistar rats throughout pregnancy), multiplex immunofluorescence analysis of interleukins (IL-1α, IL-1β, IL-3, IL-6, IL-9, and IL-12), tumor necrosis factor (TNF-α), and chemokine CCL5, as well as quantitative real-time PCR to assess the level of cytokine mRNAs in the prefrontal cortex of the sexually mature (PND60) offspring - male and female rats with prenatal alcohol intoxication and control animals. Significant decrease in the content of TNF-α and interleukins IL-1β, IL-3, IL-6, IL-9 was detected in the prefrontal cortex of male, but not in the female PA offspring.

View Article and Find Full Text PDF

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS.

View Article and Find Full Text PDF

Affective disorders, including anxiety and depression, developed in adult offspring of the mothers who consumed alcohol during pregnancy could be associated with an imbalance in neuroimmune factors in the amygdala (corpus amygdaloideum) resulted in impaired emotional stimulus processing. The aim of this study was to compare the content of cytokines TNF-α, IL-1α, IL-1β, IL-10, and IL-17 in the amygdala of adult female rats exposed to alcohol in utero and control rats. Cytokine levels were evaluated using a multiplex immunoassay system; mRNA expression was investigated using a real-time reverse transcription-polymerase chain reaction (RT-qPCR) assay.

View Article and Find Full Text PDF

Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson's disease (PD).

View Article and Find Full Text PDF