Publications by authors named "Quy-Hoai Nguyen"

Article Synopsis
  • The thalamic reticular nucleus (TRN) is crucial for regulating information flow between the cerebral cortex and thalamus, and its malfunction is associated with sensory and behavioral issues.
  • The transcription factors Ascl1 and Isl1 play a key role in determining TRN neuron identity while inhibiting non-TRN neurons, essential for forming important axonal connections.
  • Disruption of axonal pathways can lead to developmental issues, but increasing Isl1 levels can reverse some of these effects in TRN neurons lacking Ascl1, highlighting Isl1's importance in TRN development.
View Article and Find Full Text PDF

The mechanism underlying the differentiation of the dorsal midbrain into two morphologically and functionally distinct compartments, the inferior colliculus (IC) and superior colliculus (SC), which process auditory and visual information, respectively, remains largely unexplored. By using null and conditional alleles, we uncover the roles of a homeodomain transcription factor in the regulation of IC and SC differentiation. We show that regulates GABAergic neuron development in the dorsal midbrain.

View Article and Find Full Text PDF

At the top of the midbrain is the inferior colliculus (IC), which functions as the major hub for processing auditory information. Despite the functional significance of neurons in the IC, our understanding of their formation is limited. In this study, we identify the embryonic patterning gene Dbx1 as a key molecular player that governs genetic programs for IC survival.

View Article and Find Full Text PDF

Background: Dysfunction of GABAergic and glutamatergic neurons in the brain, which establish inhibitory and excitatory networks, respectively, may cause diverse neurological disorders. The mechanism underlying the determination of GABAergic vs. glutamatergic neurotransmitter phenotype in the caudal diencephalon remains largely unknown.

View Article and Find Full Text PDF