Background: Children with developmental coordination disorder (DCD) have impaired online motor control. Researchers posit that this impairment could be due to a deficit in utilizing the internal model control process. However, there is little neurological evidence to support this view because few neuroimaging studies have focused specifically on tasks involving online motor control.
View Article and Find Full Text PDFBackground: People with central nervous system disorders typically have difficulties in coordination of the upper limb and hand movements, which significantly impairs their activities of daily living. Laboratory-based measures can provide quantitative and objective information about intra-limb coordination to aid the rehabilitation process of this population. However, there is currently no comprehensive review of laboratory-based measures.
View Article and Find Full Text PDFBackground: Children with developmental coordination disorder show difficulties in making rapid online corrections, and this has been demonstrated in experiments where reaching/pointing movements were employed. However, typical hand movements in real-life contexts involve subsequent movements, such as grasping and manipulating objects after reaching. This study aimed to reinvestigate online correction of reaching movements that were connected with grasping and object manipulation and to explore its impact on the coordination of subsequent hand movements in children with developmental coordination disorder.
View Article and Find Full Text PDFBackground: Preschoolers are within their critical time in motion development; while muscles are the fundamental units in motion control and by monitoring activated intensity and duration of muscles, preschooler's motor ability which would disclose their potential pathogenesis quality can be objectively and quantitatively assessed. Although a large number of studies were available on this issue, questions still being there: what are the patterns and characteristics of lower limb muscles when they are facing with the curve walking(CW) tasks; and then how individual muscle or muscle groups coordinated while turning curves. Our purpose of this study is first to portray the patterns and characteristics of lower limb muscles of healthy preschoolers while CW and then to insight their muscles' coordination mechanism and "neuro-musculo-skeletal" feedback during motion.
View Article and Find Full Text PDFResearch Background: The obstacle-crossing task is a complex gait task, it requires an advance predict of the obstacle for posture adjustment and accurate control of bilateral legs to ensure crossing the obstacles successfully. By monitoring the activated intensity and duration of muscles in this process, preschoolers' motor ability could be assessed objectively and quantitatively, as well as disclose their potential pathogenesis quality eventually.
Scientific Question: what are the patterns and characteristics of lower limb muscles when they are facing the obstacle-crossing walking (OW) tasks, and how they coordinate their individual muscle or muscle groups of lower-limbs muscles while walking across obstacles? Thereby, the purpose of this study was first to portray the patterns and characteristics of lower limb muscles of healthy preschoolers while OW motion and second to assess the muscles' coordination mechanism.
Background: Coordination is the ability to assemble and maintain appropriate relations between joints. Investigating limb coordination in curve-turning (CT) walking could provide insightful information about the coordinating strategies and neuro-musculoskeletal system (NMSS) control in human motion.
Research Question: Although preschoolers have already established an adult-like gait, how preschoolers perform their specific gait pattern when walking in CT and what coordination strategies they would choose during the turning process have not yet been systematically considered.